AH Tokyo 検索

カスタム検索

8/23/2010

数学の体系 - バーチャル

つまり、三角形の面積が座標系を使って機械的に計算できる




ユークリッド幾何学 => 代数学 => 計算機処理


このような目的で、高校2年生の数学の教科書が作られていると思う・・・


方法論の如何によらず最終的には、数学としての成果というものは他の自然科学のように実験観察によるものであってはならない。

数学は人が創った体系、数学自体の中で、自己矛盾が起きないことが重要

逆に、物理学は実証することが重要。実証されなければ、机上の空論になってしまう

物理現象を数学を利用して表現し(理論物理学)、実験により理論を証明する(実験物理学)


現代における純粋数学の研究は主に代数学幾何学解析学の三分野に大別される。また、これらの数学を記述するのに必要な道具を与える論理を研究する学問を数学基礎論という。


歴史的には、数学の主要な分野は人類が農耕を行うと共に必要となった次の三つの要素から生じたものである。農作物の分配管理や商取引のための計算、農地管理のための測量、そして農作業の時期を知る法のための天文現象の周期性の解明。


現代における純粋数学の研究は主に代数学幾何学解析学の三分野に大別される。また、これらの数学を記述するのに必要な道具を与える論理を研究する学問を数学基礎論という。


数学の発展は?


幾何学(たとえば、ピタゴラスの定理)


代数学(たとえば、ベクトル)


解析学(たとえば、微積分)


そして、円と接線の話は?


微分幾何学では、座標系やなめらかさ、それに向きの概念が強調されるが、一方で代数幾何学では、代数方程式の解となるような集合を幾何学的な対象とする。



---Wiki

数学(すうがく、ギリシア語μαθηματικά英語mathematics)は、構造変化空間といったものを対象として、いくつかの仮定から始めて、決められた演繹的推論をすすめることで得られる事実(定理)のみからなる体系を研究する学問である。



数学の語源について日本語「かず」は、説得力のある語源説は示されていない。提唱されたいくつかの説についてはを参照。漢字「數」(数の正字)は、一説には、算木を扱って数をかぞえることであり[要出典]、また一説には、を立てて数をかぞえることである[要出典]英語 mathematics は、ギリシア語に起源を持つ(μάθημα [máthema]: マテーマタ、学、知識、学ぶこと; μαθηματικός [mathematikos]: 好んで学ぶ、学ぶ性質の)。古代ギリシアピュタゴラス教団における数学研究では数は神聖視されていた[要出典]
数学とは、狭義には伝統的な数論幾何学などの分野における研究とその成果の総称として、またそれらの成果を肯定的に内包する公理と推論からなる論理と理論の体系を指して言うものである。また広義には、超数学(メタ数学)などと呼ばれる枠組みにしたがって公理推論規則が定められた体系一般を指す。現代的な数学においては、公理的に定義される抽象的な構造を、形式論理を共通の枠組みとして用いて探究する。方法論の如何によらず最終的には、数学としての成果というものは他の自然科学のように実験観察によるものであってはならない。
数学、特に伝統的な純粋数学では数学研究が自己目的化されており、数学への内的な興味のために研究がなされる。 このような数学ではいかに本質的な概念なり定理なりを得ていかに体系的な数学を構築するかが重要視されており、数学的対象を記述するのに適した概念空間を定義したり、数学的事象をうまく表現した定理を得たりする事が数学者の主な仕事である。一方で、美的な理由からそれぞれの分野での研究をしている数学者もいる。彼らは対称性や直観性などその独特の審美眼を以て、数学を芸術に近しいものとみなしているのである。この分野については数学の哲学数学的な美に詳しい。
伝統的な数学分野で研究される対象は物理現象と深い関わりを持つものが多い。一方、応用分野では数理モデルという形で例えば計算機言語などといったものを対象とした研究が行われる。もちろん、数理モデルにおける演繹から得られる成果と実際との間にいくぶんかのずれを生じることもあるが、そのずれの評価とモデルの実用性・実効性については多くは数学の外の話である。また、数学とパズルの類似性が指摘される事があるが、数学が本質性や体系性を重要視することに照らせば、パズルはむしろ奇をてらい非体系的である。こうした研究姿勢がしばしば様々な数学の諸分野を統一するような概念へと導いたり、他分野の学問の発展に貢献したりする事につながる。

研究 [編集]

歴史的には、数学の主要な分野は人類が農耕を行うと共に必要となった次の三つの要素から生じたものである。農作物の分配管理や商取引のための計算、農地管理のための測量、そして農作業の時期を知る法のための天文現象の周期性の解明。これら三つの必要性は、そのまま数学の大きな三つの区分、構造、空間、変化のそれぞれの研究に大体対応しているといえよう。例えば土木工事などの経験から直角三角形の辺の比は知り得ても、論理的にはこの時点では解明できていない。3:4:5 は経験的に正しいが、比から導かれるc2 = a2 + b2 (cba は辺の長さ、または比)が普遍的に成立するかは不明である(証明はピタゴラスの定理を参照こと)。かつて数学が独立した学問でなく、純粋な実用数学であった時代には、あたかも自然科学におけるデータのようにこれらの関係を扱い、例を多数挙げることで正しさを主張するといった手法でもさして問題視されなかった。しかし数は無限に存在するため、たとえコンピュータを使って沢山の数を調べても完全に証明することはできない。よってこのような手法では完全な真偽の判定はできず、数学がひとつの学問として研究されるようになって以降は当然ながら別の方法が求められることになり、論理を用いて真偽を判定する「数学的証明」という概念が発達した。そのため現在の数学では証明は非常に重視されている。
現代における純粋数学の研究は主に代数学幾何学解析学の三分野に大別される。また、これらの数学を記述するのに必要な道具を与える論理を研究する学問を数学基礎論という。
基礎付け
数学の基礎を明確にすること、あるいは数学そのものを研究することのために、集合論数理論理学そしてモデル理論は発展してきた。フランスの数学者グループであるニコラ・ブルバキは、集合論による数学の基礎付けを行い、その巨大な体系を『数学原論』として著した。彼らのスタイルはブルバキ主義とよばれ、現代数学の発展に大きな影響をあたえた。個々の対象の持つ性質を中心とする研究方法である集合論とは別の体系として、対象同士の関係性が作るシステムに主眼を置くことにより対象を研究する方法として圏と関手の理論がある。これはシステムという具体性からコンピュータネットワークなどに応用される一方で、極めて高い抽象性を持つ議論を経て極めて具体的な結果を得るようなアブストラクト・ナンセンスなどと呼ばれる形式性も持ち合わせている。
構造
関数図形の中のなどの数学的対象の間に成り立つさまざまな関係を形式化・公理化して調べるという立場がダフィット・ヒルベルトやニコラ・ブルバキによって追求された。数の大小関係や演算、点の近さ遠さなどの関係がそれぞれ順序構造の構造、位相構造などの概念として公理化され、その帰結が研究される。特に、様々な代数的構造の性質を研究する抽象代数学は20世紀に大きく発展した。現代数学で取り扱われる構造は上のような基本的な構造にとどまらず、ことなった種類の構造をあわせて考える位相線型空間双曲群などさまざまなものがある。
空間
空間の研究は幾何学とともにはじまる。はじめは、それは身近な三次元におけるユークリッド幾何学三角法であるが、後にはやはり、一般相対性理論で中心的な役割を演ずる非ユークリッド幾何学に一般化される。長い間未解決だった定規とコンパスによる作図の問題は、最終的にガロア理論によって決着が付いた。現代的な分野である微分幾何学代数幾何学は幾何学を異なる方向に発展させた:微分幾何学では、座標系やなめらかさ、それに向きの概念が強調されるが、一方で代数幾何学では、代数方程式の解となるような集合を幾何学的な対象とする。集合は数学の基礎を成す重要な概念であるが、幾何学的な側面を強調する場合、集合を空間と言い、その集合の元を点と呼ぶ。群論では対称性という概念を抽象的に研究し、空間と代数構造の研究の間に関連を与える。位相幾何学連続という概念に着目することで、空間と変化の双方の研究に関係する。
解析
測る量についての変化を理解し、記述することは自然科学の共通の主題であり、微積分学はまさにそのための最も有用な道具として発展してきた。変化する量を記述するのに使われる中心的な道具は関数である。多くの問題は、とても自然に量とその変化の割合との関係になり、そのような問題を解くための手法は微分方程式の分野で研究される。連続的な量を表すのに使われる数が実数であり、実数の性質や実数に値をとる関数の性質の詳しい研究は実解析として知られる。いくつかの理由から、複素数に拡張する方が便利であり、それは複素解析において研究される。関数解析学関数空間(関数の集合に位相構造を持たせたもの)が興味の中心であり、この分野は量子力学やその他多くの学問の基盤となっている。自然の多くの現象は力学系によって記述され、カオス理論では、多くの系が決定可能であるにもかかわらず予測不可能な現れ方をする、という事実を扱う。
計算機
人類がコンピュータを最初に思いついたとき(それは実際に作られるより遥かに前のことだが)、いくつかの重要な理論的概念は数学者によってかたち作られ、計算可能性理論計算複雑性理論情報理論、そしてアルゴリズム情報理論の分野に発展した。これらの問題の内の多くは計算機科学において研究されている。離散数学は計算機科学において有用な数学の分野の総称である。数値解析は、丸め誤差を考慮に入れて、幅広い数学の問題について効率的にコンピュータの上で数値解を求める方法を研究する。また最近では、計算機科学を駆使して自然科学上の問題を解決する計算科学が急速に発展している。
統計
応用数学において重要な分野に統計学が挙げられる。統計学はランダムな現象の記述や解析や予測を可能にし、すべての科学において利用されている。統計学は隣接する分野である確率論とは違って実際の統計データを扱う事もある事から、「確率論までは数学だが統計学は違う」という考えを持っている人もいる。

分野 [編集]

以下の分野や項目の一覧は、数学に対する一つの有機的な見方を反映している。
便宜上の分類
--自然数--整数--偶数--奇数--小数--分数--素数--有理数--無理数--実数--複素数--四元数--八元数--十六元数--超実数--順序数--濃度--p進数--巨大数--整数列--数学定数--数の名称--無限
変化
算術--微積分学--ベクトル解析--解析学--微分方程式--力学系--カオス理論--関数一覧
構造
抽象代数学--数論--代数幾何学--群論--モノイド--解析学--位相幾何学--線型代数学--グラフ理論--圏論
空間
解析幾何学--位相幾何学--幾何学--三角法--代数幾何学--微分幾何学--線型代数学--フラクタル幾何--図形--図形の一覧--ベクトル解析
有限数学
組合せ論--素朴集合論--確率論--統計学--計算理論--離散数学--暗号法--暗号理論--グラフ理論--ゲーム理論--数理工学
数理科学
計算科学--数値解析--確率論--逆問題--数理物理学
有名な定理と予想
フェルマーの最終定理--リーマン予想--連続体仮説--P≠NP予想--ゴールドバッハの予想--双子素数の予想--ゲーデルの不完全性定理--ポアンカレ予想--カントールの対角線論法--ピタゴラスの定理--中心極限定理--微積分学の基本定理--代数学の基本定理--四色定理--ツォルンの補題--オイラーの等式--コラッツの予想--合同数の問題--バーチ・スウィンナートン=ダイアー予想--ヒルベルトの23の問題
基礎と方法
数理哲学--数学的直観主義--数学的構成主義--数学基礎論--集合論--数理論理学--モデル理論--圏と関手の理論--数学的証明--数学記号の表--逆数学
数学の歴史と世界における発展
数学の歴史--ユークリッド原論--和算--インドの数学--中国の数学中国の剰余定理--アラビア数学--数学年表--数学者--フィールズ賞--アーベル賞--国際数学連合--数学の競技

数学に関する賞 [編集]

0 件のコメント:

The Definition Of Art Harbour Blog



The Definition Of Art Harbour


Virtual International Trade Harbours Of Art


Opening Anniversary Date: December 1, 2006

Language: Multi Language


Each harbour can export the works toward the virtual world.

People and organization can import the works from all over the world.


Now,Item: Works on Art Activities that are expressed with Photos and Explanations etc.

Export Method: Each Harbour put the Works onto this blog

Import Method: People and Organizations accsess this blog

Order Method: People and Organizations put some comments about the Works onto this blog.


In the future, we will need transportation including trains,airplanes,ships, cars, buses etc.

in order to export and import people, goods etc. ?


Art Harbour


アート・ハーバーとは


アートのバーチャル国際貿易港


開港記念日:2006年12月1日

言語:マルチ言語


各港は、バーチャルな世界へ向けて、作品を輸出できる

人や組織などは、バーチャルな世界から、作品を輸入できる


現時点輸出品目: アートに関する活動などを「写真と文などで表現した作品」

輸出方法: 各港で作品をこのブログに書き込むことで、輸出したものとみなす

輸入方法: 人や組織が作品をこのブログで参照することで、輸入したものとみなす

注文方法: 感想などをコメントに入れることで、注文したものとみなす


将来、、、列車、飛行機、船、車、バスなどを利用して、リアルな人や物が輸出入できる?


アート・ハーバー

Multi Language

現時点では?


ブログは日本語ベース


Google Translatorで、各国語へ、変換




そして、現場で、リアルなコミュニケーションは?


英語ベースで、現地語がお愛想・・・


こんな感じかな?


Aoyagi YoSuKe

Art HarbOur


The Gaiaと各ハブは?


英語がベースで、Google Translatorで、各国語へ・・・

Copyright and Responsibility of AH Shimokitazawa blog



Copyright:


Each manager or each member of Each AH Local must independently handle Copyright.


Each may insist on Copyright or discard Copyright independently.


Copyright depends on each manager or each member.


Responsibility:


Each manager or each member of Each AH Local

must independently have the resposibility on the posted works.

Art Harbour Shimokitazawa


コピーライト:

各アート・ハーバーのマネージャーまたはメンバーは

各々でコピーライトの取り扱いをしなければならない。

コピーライトを主張するか破棄するかは各々に任される。


責任:


各アート・ハーバーのマネージャーまたはメンバーは

各々が投稿した作品に関して責任を持たなければならない。


アート・ハーバー 下北沢


Posting Rule - 掲載ルール




Introducing People, Works, Shops etc. related to Art Harbour as a spot ad.


As a general rule, the details such as map, price should be in the Official Sites related to the ad.

Each ad may contain the Official Sites' URL related to the ad.


Restriction: The Number of Photos is within 6(basically 3). about 640x480 pixel


Ad Size: Within about 2 standard printing papers.


Example: Spot ad. , Flyer, Live Report, Poem, Short Story, Illustraltion, Photo, Paintings etc.


Art Harbour Shimokitazawa



アート・ハーバーに関連した人、作品、店などをスポット広告として紹介する。


原則として、地図や価格などの詳細は広告に関連したオフィシャル・サイトに掲載する。


各広告には関連オフィシャル・サイトのURLを掲載しても良い。


制限:写真など6枚以内(基本は3枚) 1枚に付き640×480ピクセル程度


サイズ:標準プリント用紙(A4)約2枚以内


例:スポット広告、フライヤー、ライブの報告、詩、イラスト、絵など



アート・ハーバー 下北沢