「朱に交われば赤くなる」 - いにしえの格言
「青は藍より出でて、藍より青し」 - いにしえの格言
最後は、一番重要です。クリエイティブの原点です。
先生から習って、先生を超える・・・
上の二つは、模倣で終わっている・・・
ソフトウェアDNA?
ドーキンスは、遺伝子(ジーン)に対して、ミームという言葉を使った。
模倣によって、受け渡される文化の一要素
デネットは、人間の意識の進化にミームが大きな役割を果たしている、と述べた・・・
「人間の心は、ミームが自分にとってよりよい住環境にするために人間の脳を再編成するときに、作られる人工物である」
今や?
活発なミームは、「都市伝説」と「自然伝説」が両立しているのではないだろうか? と個人的に思う・・・
よって・・・
The Motto
21st. Century Renaissance
21世紀のルネサンス
The Greatest Illusions
偉大なる幻想
Create the NeoClassic&NeoNeo&ClassicNeo
新しくて古いもの、新しくて新しいもの、古くて新しいものを創造する
We don't create the ClassicClassic.
We share those, for example, the Pyramids.
We call them the World Heritages.
土曜日, 3月 29, 2008
Creative 3か条 - 非常識であれ
Creative - 3か条
1.非常識であれ
2.妄想力を鍛えよ
3.実現力を鍛えよ
青柳洋介
英語に訳すと、どうなるのかな?
Creative 3
No.1 Be absurd!
No.2 Be imaginary!
No.3 Try to implement!
Aoyagi YoSuKe
投稿者 AO 時刻: 3/29/2008 04:42:00 午後
ラベル: アート・ハーバー, 教育, 理念
Creator Aoyagi YoSuKe
日本人の多くは、「感覚運動モデル」で行動しているようだ。行動の開始点が感覚刺激である。
欧米人の上層部は、「観念運動モデル」で行動しているようだ。行動の開始点は、その行動に関連する「意図」である。
証拠)
小澤征爾の指揮と、カラヤンの指揮を比べると、よく分かる・・・
ホンネとタテマエの社会、個人と世間体、実社会とバイブルなど・・・
これらが、ダブルバインドになって、人が精神的な病を患っているようだ・・・
///
他の最近の V1 の研究では、そのチューニングの特性を完全に説明し、皮質のカノニカル回路のモデルとして利用しようと試みたものがある。
〔書評〕T. Ziemke, et al. Body, Language and Mind Vol. 1
以上をまとめるなら、顕在的行為と運動像の間には、強い心理学的・神経生理学的な類似性がある、ということを示唆する、相当数の研究が存在するということだ。それゆえ、運動像とそれに関連する諸現象は、行為のシミュレーションという観点から、次のように説明できるかもしれない。つまり、顕在的行為を生み出すために通常使われる神経プロセスが、顕在的行為なしに、運動像によって再活性化されるのだ。
さて、以上はシミュレーション理論のほんの一端を紹介したにすぎない。本論文で著者たちは、他にも、カノニカルニューロンやミラーニューロンを介した行為のシミュレーションなどについて、興味深い議論を展開している。だが、一貫しているのは、上で見たような再活性化メカニズムによって、多くの高次の認知が行われるという主張である。このシミュレーション理論によれば、認知の身体化にとって決定的なのは、認知者の身体の物理的本性や環境との相互作用そのものというよりは、感覚運動と高次の認知プロセスの関係である。より具体的には、基底にある神経メカニズムのレベルにおいて、いかに高次の認知プロセスが根本的に感覚運動に基づいているか、ということである。
---Wikipedia
ミラーニューロン(英: Mirror neuron)は霊長類などの動物が自ら行動する時と、その行動と同じ行動を他の同種の個体が行っているのを観察している時の両方で活動電位を発生させる神経細胞である。したがって、他の個体の行動に対して、まるで自身が同じ行動をしているかのように"鏡"のような活動をする。このようなニューロンは、マカクザルで直接観察され、ヒトやいくつかの鳥類においてその存在が信じられている。ヒトにおいては、前運動野と下頭頂葉においてミラーニューロンと一致した脳活動が観測されている。
ミラーニューロンは、神経科学におけるこの10年で最も重要な発見の1つであると考える研究者も存在する。その中でも、ヴィラヤヌル・S・ラマチャンドラン[1]は模倣が言語獲得において重要な役割を持つと考えている。しかし、その分野での認知度にも関わらず、ミラーニューロンの活動が模倣などの認知活動において、どのような役割を果たすのかという疑問に答える神経モデルや計算モデルは、現時点では存在しない[2]。
加えて、1つの神経細胞がある現象を引き起こすとは一般的には考えられていない。むしろ、神経細胞のネットワーク(神経細胞群(neuronal assembly))全体が、ある活動を行う際に活性化していると考えられている。
ミラーニューロンの機能については多くの説がある。このようなニューロンは、他人の行動を理解したり、模倣によって新たな技能を修得する際に重要であるといえるかもしれない。この鏡のようなシステムによって観察した行動をシミュレートすることが、私たちの持つ心の理論の能力に寄与していると考える研究者も存在する[3][4]。また、ミラーニューロンが言語能力と関連しているとする研究者も存在する[5]。さらに、ミラーニューロンの障害が、特に自閉症などの認知障害を引き起こすという研究も存在する[6][7]。しかし、ミラーニューロンの障害と自閉症との関係は憶測の域を出ておらず、ミラーニューロンが自閉症の持つ重要な特徴の多くと関連しているとは考えにくい[2]

ミラーニューロンの発見
ミラーニューロンはイタリアにあるパルマ大学のジアコーモ・リゾラッティ(Giacomo Rizzolatti)らによって、1996年に発見された。彼らは手の運動、例えば対象物を掴んだり操作したりする行動に特化した神経細胞を研究するために、マカクザルの下前頭皮質に電極を設置した。この実験において、彼らはマカクザルがエサを取ろうとする際の、特定の動きに関わる神経細胞の活動を記録していた[8]。その際に彼らは、実験者がエサを拾い上げた時に、マカクザル自身がエサを取るときと同様の活動を示すニューロンを発見した。その後、さらなる実験によってサルの下前頭皮質と下頭頂皮質の約10%のニューロンが、この'鏡'の能力を持ち、自身の手の動きと観察した動きの両方で同様の反応を示すことが分かった。
この研究が論文として発表され[9]、さらに追試による検証が行われ[10]ミラーニューロンは脳における下前頭皮質と下頭頂皮質の両方に存在することが分かった。最近になって、機能的核磁気共鳴画像法 (fMRI)、経頭蓋磁気刺激法(TMS)、脳波計(EEG)や行動実験によって、実際の行動とその観察との両方に反応するシステムの存在がヒトにおいても強く支持されている。また、そのような脳領域とマカクザルで発見された領域には類似が見られた[11]。
より最近になって、カイザース(Keysers)らはヒトとサルの両方で、この鏡のようなシステムが行動の音にも反応することを示した[12][13]。
サルにおける研究
マカクザルの新生児が相手の表情を真似ている
ミラーニューロンが細胞単位で研究されている唯一の動物がマカクザルである。マカクザルにおいて、ミラーニューロンは下前頭回(F5領域)と下頭頂葉で発見されている[14]。
ミラーニューロンは他の動物の行動の理解の仲介役を担っていると信じられている。例えば、サルが紙を引き裂くときに反応するミラーニューロンは人が紙を引き裂くのを見たり、引き裂く音を (視覚的な手がかり無しで)聞いたりする際にも反応する。このような性質から、研究者は、サルや他の動物が行う'紙を引き裂く'という行動の抽象的な概念を、ミラーニューロンがエンコードしていると信じている[15]。
マカクザルにおけるミラーニューロンの機能はまだよく分かっていない。成体のマカクザルが模倣によって何かを習得するとは考えにくい。最近の研究では、マカクザルの赤ちゃんは、新生児の時のみわずかな時間だけ人の表情の動きを模倣することが出来ることが示されている[16]。しかし、この行動にミラーニューロンが関わっているかどうかはまだ分かっていない。
成体のサルにおいては、ミラーニューロンは他のサルの行動を理解したり、認識したりすることを可能にしていると考えられている[17]。
ヒトにおける研究

大脳の前頭葉と頭頂葉の位置を示した模式図。脳を左側から見た図で、下前頭葉は青い領域の下側、上頭頂葉は黄色い領域の上側にあたる。
ヒトの脳を細胞単位で研究することは難しい。したがって、ミラーニューロンがヒトの脳に存在するという確証は得られていない。しかし、機能的核磁気共鳴画像法(fMRI)による脳イメージング研究によって、ヒトの下前頭回と上頭頂葉が、被験者が実際に行動する時と他者の行動を観察する時の両方で活動を示すことが分かった。したがって、この領域にミラーニューロンが存在し、ヒトにおけるミラーニューロンシステムを構成していると考えられている[18]。 ヒトにおけるミラーニューロンシステムを研究するために、いくつかの間接的な計測が行われている。例えば、ヒトが他人の行動を観察している際、観察者の運動野がより活動しやすくなる[19]。この変化は経頭蓋磁気刺激法(TMS)により誘発される運動誘発電位(motor evoked potential(MEP))の大きさを計測することで分かる。運動誘発電位は、脳のミラーニューロン領域と強く接続されている一次運動野から発生するので、その大きさの変化はミラーニューロンシステムの活動量として考えられる。最近のデータによると、このような運動誘発電位の大きさの変化は、刺激と反応の対応関係を訓練することで大きく変えることができる。Catmurらのこの研究では、観察した人差し指と自身の人差し指の運動の両方で運動誘発電位の大きさの変化が増加する領域を、訓練によって小指の運動に反応する領域と入れ替えることに成功した[20]。
アイトラッキング装置によっても、ミラーニューロンの処理を間接的に計測することが出来る。他人の手が動いているのを見る時、人はその手が掴もうとする対象へと目線が向いている。それと似た形で、他者の行動を観察するとき、人の目線は他人の行動を予測しながら動いている[21]。
ミラーニューロンの発達
アイトラッキング装置を用いたヒトの新生児のデータでは、ミラーニューロンシステムは生後12ヶ月までに発達し、新生児が他者の行動を理解することを助けているとされている[22]。ミラーニューロンがこの鏡のような能力をどのように獲得するかというのは大きな疑問である。1つのモデルとしてはミラーニューロンはヘッブの法則に基づく学習によって訓練されるというものがある[23]。しかし、前運動野のニューロンが鏡の能力を得るために行動によって訓練される必要があるなら、どのようにして新生児の赤ん坊が他人の表情をまねることができるのかという問題が残る。他人の表情の真似は、メルツォフとムーア(Meltzoff & Moore)が示したように、今までに見たことがないものに対する模倣だからである。この問題は、他人の表情の真似がミラーニューロンを必要としない特殊なタイプの模倣であると仮定しなければ解けない。
考えられている機能
他者の意図の理解
多くの研究において、ミラーニューロンを、目標と意図の理解と関連付けている。フォガッシ (Fogassi)らは2005年の研究において[24]、2匹のアカゲザルの下頭頂葉 (IPL)にある41のミラーニューロンの活動を計測した。この、下頭頂葉は長い間、感覚情報を統合する連合皮質であると考えられている。サルは実験者がリンゴを掴み口へと持っていく行動と、リンゴを掴みカップへと入れるという2種類の行動を観察した。合計で15のミラーニューロンが、"掴んで食べる"動きには活発に反応し、"掴んで入れる"動きにはまったく反応しなかった。また、4ニューロンはその反応とまったく逆の活動パターンを示した。ニューロンの活動を決定するのは、リンゴを操作する際の力学的な力ではなく、行動のタイプのみであるといえる。何故なら、サルのニューロンは実験者の二次的な行動 (リンゴを食べる、または入れる) の前に発火が始まっているからである。したがって、下頭頂葉のニューロンは"行動の組み込まれた最終目標によって異なる方法で、同じ行動 (掴む) をコードしている"といえる[24]。このことは、他者の次の行動を予測し、意図の情報を得るための神経基盤となっていると考えられる[24]。
共感
ミラーニューロンは共感とも関連付けられている。何故なら、特定の脳領域 (特に島皮質前部と下前頭皮質) は自身の情動(快、不快、痛みなど)に反応し、かつ他者の情動を観察する際にも活動するからである[25] [26][27]。 しかし、このような脳領域は手の動きに対して鏡のような働きをする領域とは非常に異なっており、しかも、サルの研究では他者の感情に共感するミラーニューロンは見つかっていない。より最近の研究ではカイザース(Keysers)らが、自己評価質問表における共感の値が高い人ほど手の動きに対するミラーニューロンシステム[28]と情動に対するミラーニューロンシステム[29]の活動が高いことを示し、ミラーニューロンシステムが共感と関連付けられるより直接的な証拠としている。
言語
ヒトにおいて、ミラーニューロンシステムはブローカ野(言語領域)に近い下前頭皮質で見つかっている。このことからヒトの言語は、ミラーニューロンによる身振りの実行/理解のシステムから生まれたと考えることもできる。ミラーニューロンは他者の行動の理解、模倣の習得、他者の行動のシミュレーションをもたらすといわれている[30]。しかし、他の多くの言語進化の理論と同様に、その根拠となる直接の証拠はほとんど無い。
自閉症
ミラーニューロンの欠陥と自閉症との関連を指摘する研究者もいる。一般的な子供では、ミラーニューロンの活動の指標であると信じられている、他者の動きを見ている際の運動野における脳波が抑制されている。しかし、自閉症の子供ではこの様な抑制は見られない[31]。また、自閉症の子供は模倣の際のミラーニューロン領域の活動が比較的低い[32]。さらに、自閉症スペクトラム障害を持つ成人の脳では、健常な成人と比較して、ミラーニューロンに関係しているとされる領域に解剖学的な違いが見つかっている。このような領域は全て、健常者に比べて薄くなっており、その薄さは自閉症の度合いと相関していた。さらに、この相関は他の領域では見られないものであった[33]。この結果に基づき、自閉症はミラーニューロンの欠如によって生じ、社会的能力や模倣、共感、心の理論の障害を起こすと主張する研究者も存在する。しかし、この様な理論はいくつもある自閉症の理論の1つに過ぎず、いまだ証明されていない[2]。
心の理論
心の哲学において、ミラーニューロンは、私たちの持つ'心の理論'の能力に関係するシミュレーション説の研究者の注目を集めるものとなっている。'心の理論'とは他者の体験や行動からその人の心理的な状態 (例えば、考えや欲求)を推測する能力のことである。例えばあなたが、'クッキー'とラベルされた缶に手を伸ばそうとしている人を見た時、あなたはその人がクッキーを食べたいと考え、(たとえ、本当はクッキーがその缶の中に入っていないことをあなたが知っていたとしても)その人はクッキーがその缶に入っていると考えている、と推測するだろう。
このような私たちの持つ心の理論の能力に関してはいくつもの異なるモデルが存在する。その内最もミラーニューロンと関連が深いのはシミュレーション説である。シミューレーション説によれば、私たちが無意識に観察している他者の心理状態をシミュレートすることで、心の理論は可能となる[34][35]。ミラーニューロンは、私たちが他者をより深く理解するために行うシミュレーションに必要となる機構だと解釈され、ミラーニューロンの発見は、 (発見の10年前から提唱されていた) シミュレーション説の有効性を証明するものであると考えられている[36]。
性差
ミラーニューロンに関連するMEGの信号が男性に比べ女性の方が強いとする研究が存在する[37]。しかしこの実験のサンプルサイズは比較的小さいため、さらなる検証が必要である。
脚注
^ V.S. Ramachandran, "Mirror Neurons and imitation learning as the driving force behind "the great leap forward" in human evolution". Edge Foundation. 2006-11-16 閲覧。
^ a b c Dinstein I, Thomas C, Behrmann M, Heeger DJ (2008). “A mirror up to nature”. Curr Biol 18 (1): R13-8. DOI: 10.1016/j.cub.2008.01.044.
^ Christian Keysers and Valeria Gazzola, Progress in Brain Research, 2006, [1]
^ Michael Arbib, The Mirror System Hypothesis. Linking Language to Theory of Mind, 2005, retrieved 2006-02-17
^ Hugo Theoret, Alvaro Pascual-Leone, Language Acquisition: Do As You Hear, Current Biology, Vol. 12, No. 21, pp. R736-R737, 2002-10-29
^ Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA., EEG evidence for mirror neuron dysfunction in autism spectral disorders, Brain Res Cogn Brain Res.; 24(2):190-8, 2005-06
^ Mirella Dapretto, Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders, Nature Neuroscience, Vol. 9, No. 1, pp. 28-30, 2006-01
^ Giacomo Rizzolatti et al. (1996) Premotor cortex and the recognition of motor actions, Cognitive Brain Research 3 131-141
^ Gallese et al, Action recognition in the premotor cortex, Brain, 1996
^ Fogassi et al, Parietal Lobe: From Action Organization to Intention Understanding, Science, 2005
^ Rizzolatti G., Craighero L., The mirror-neuron system, Annual Review of Neuroscience. 2004;27:169-92
^ Kohler et al., Science, 2002 [2]
^ Gazzola et al., Current Biology, 2006 [3]
^ Rizzolatti G., Craighero L., The mirror-neuron system, Annual Review of Neuroscience. 2004;27:169-92
^ Giacomo Rizzolatti and Laila Craighero Annu. Rev. Neurosci. 2004. 27:169-92
^ Ferrari PF, Visalberghi E, Paukner A, Fogassi L, Ruggiero A, et al. (2006)Neonatal Imitation in Rhesus Macaques. PLoS Biol 4(9):e302
^ Giacomo Rizzolatti and Michael A. Arbib, Language within our grasp, Trends in neurosciences, Vol. 21, No. 5, 1998
^ Marco Iacoboni, Roger P. Woods, Marcel Brass, Harold Bekkering, John C. Mazziotta, Giacomo Rizzolatti, Cortical Mechanisms of Human Imitation, Science 286:5449(1999)
^ Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol. 1995 Jun;73(6):2608-11.
^ Catmur, C., Walsh, V. & Heyes, C. Sensorimotor learning configures the human mirror system. Curr. Biol. 17, 1527-1531(2007)
^ Flanagan JR, Johansson RS. Action plans used in action observation. Nature. 2003 Aug 14;424(6950):769-71.
^ Terje Falck-Ytter, Gustaf Gredeback & Claes von Hofsten, Infants predict other people's action goals, Nature Neuroscience 9(2006)
^ Kaysers & Perrett, Trends in Cognitive Sciences 8(2004)
^ a b c Fogassi, Leonardo, Pier Francesco Ferrari, Benno Gesierich, Stefano Rozzi, Fabian Chersi, Giacomo Rizzolatti. 2005. Parietal lobe: from action organization to intention understanding. Science 308: 662-667.
^ Wicker et al., Neuron, 2003 [4]
^ Singer et al., Science, 2004 [5]
^ Jabbi, Swart and Keysers, NeuroImage, 2006 [6]
^ Gazzola, Aziz-Zadeh and Keysers, Current Biology, 2006 [7]
^ Jabbi, Swart and Keysers, NeuroImage, 2006 [8]
^ Skoyles, John R., Gesture, Language Origins, and Right Handedness, Psycoloquy: 11,#24, 2000
^ Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA., EEG evidence for mirror neuron dysfunction in autism spectral disorders, Brain Res Cogn Brain Res.; 24(2):190-8, 2005-06
^ Mirella Dapretto, Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders, Nature Neuroscience, Vol. 9, No. 1, pp. 28-30, 2006-01
^ Hadjikhani and others. “Anatomical Differences in the Mirror Neuron System and Social Cognition Network in Autism”. Cerebral Cortex.
^ Gordon, R. (1986). Folk psychology as simulation. Mind and Language 1: 158-171
^ Goldman, A.(1989). Interpretation psychologized. Mind and Language 4: 161-185
^ Gallese, V., and Goldman, A.(1998). Mirror neurons and the simulation theory of mindreading. Trends in Cognitive Sciences. 2: 493-501
^ Cheng, Y. W., Tzeng, O. J. L., Decety, J., Imada, T., Hsieh, J. C. 2006. Gender differences in the human mirror system: a magnetoencephalography study. Neuroreport. 2006 Jul 31;17(11):1115-9
参考文献
"The others are inside you," “Ingenioren”の記事(原題 : “De andre er inden I dig”).
E. Bruce Goldstein. (2002). Sensation and Perception, Wadsworth (p. 321-324)
関連文献
Iacoboni M, Mazziotta JC (2007). “Mirror neuron system: basic findings and clinical applications”. Ann Neurol 62: 213. DOI: 10.1002/ana.21198.
関連項目
自閉症
心の理論
脳機能局在論
外部リンク
以下のリンクはすべて英語
(百科事典)「mirror neuron」 - スカラペディアにあるミラーニューロンについての項目。(英語)
NOVA scienceNOW: Mirror Neurons (14分のミラーニューロンの解説動画がある)
On Mirror Neurons or Why It Is Okay to be a Couch Potato
Interdisciplines: What do mirror neurons mean? (ミラーニューロンの理論的示唆)
Neuroscience And Bio Behavioural Reviews.
LiveScience article on mirror neurons in mind reading
A primer on mirror-neuronsミラーニューロンの模倣における役割
Artist Amy Caron's Waves of Mu Mirror Neuron installation and performance art piece
---Wikipedia
視覚野 (しかくや、英:visual cortex)という用語は、V1と略される一次視覚野 (または、線条皮質(striate cotex、有線皮質とも)) 及びV2、V3、V4、V5と略される外線条皮質(extrastriate cortex、有線外皮質、有線領外皮質とも)を示す。一次視覚野はブロードマンの脳地図における17野と解剖学的に同等である。
イントロダクション
一次視覚野 (V1) は、後頭葉にある鳥距溝の周りに位置する顆粒皮質 (Koniocortex) であり、外側膝状核から直接情報を受け取る。
背側皮質視覚路が緑、腹側皮質視覚路が紫で示されている。両者は一次視覚野から出発している。
V1 は背側皮質視覚路と腹側皮質視覚路と呼ばれる2種類の主要な視覚経路に情報を伝える。
背側皮質視覚路は V1より始まり V2 、背内側野、 MT 野 (V5 とも) を通過し、後頭頂皮質へと向かう。背側皮質視覚路は時に、where経路とも呼ばれ、運動、物体の位置や、眼や腕の制御、特に視覚情報を用いたサッカードや到達運動に関連付けられている[1]。
腹側皮質視覚路は V1より始まり V2、V4、を通過し下側頭皮質へと向かう。腹側皮質視覚経路は時に、what経路とも呼ばれ視覚対象の認識や形状の表象(意識にのぼる映像)と関連している。また、長期記憶の貯蔵とも関連している。
背側皮質視覚路と腹側皮質視覚路の二分法(またはwhere/whatの二分法、行動(action)/知覚(perception)の二分法)[1]はアンガーライダー (Ungerleider) とミシュキン (Mishkin) によって最初に定義され[2]、現在でも視覚神経科学者や心理学者の間で論争を巻き起こしている。おそらく、この二分法は視覚野での実際の出来事を単純化し過ぎている。この研究はエビングハウス錯視などによって知覚の判断が歪められるという発見に基づいているが、通常、人が把握運動などの行動によって反応する時、知覚の歪みは発生しない。しかし、最近の研究 [3]では行動と知覚はこれらの錯視で同様に錯覚が起きているとされている。
視覚野のニューロンは、視覚刺激が受容野に呈示された時、活動電位を発生させる。定義から、受容野は全視野の内、活動電位を生じさせるものを指す。しかし、あるニューロンに関しては、そのニューロンの受容野の特定の刺激のサブセットに応答する。この特性はチューニングと呼ばれる。より初期の視覚野ではより単純なチューニングが行われている。例えば、V1 のあるニューロンはその受容野に現れる垂直な線に対して発火する。より高次の視覚野ではより複雑なチューニングが行われている。例えば下側頭皮質 (IT) のあるニューロンはその受容野に現れる特定の顔に対して発火する。
視覚野は後大脳動脈の鳥距溝枝から血液の供給を最も受ける。
最近の研究
一次視覚野の研究では活動電位をネコ、フェレット、ラット、ネズミ、サルの脳に刺した電極によって計測したり、動物における内因性光学信号を計測したものや、ヒトやサルの V1 のfMRI信号を計測するものがある。
最近のある発見では、ヒトの V1 のfMRI により計測される信号は注意による調節 (attentional modulation) を強くうけるというものがある。この結果はマカクザルの生理学的な研究において、注意による調節によりニューロンの発火に殆ど変化が見られなかった結果と対照的である。しかし、マカクザルの研究は1ニューロンのスパイク活性を調べたものであったが、fMRI 信号の神経基盤は主に後シナプス増強 (PSP) によるものである。したがって、今回の結果の違いがそのままヒトとマカクの生理学的な違いを意味するものではない。
他の最近の V1 の研究では、そのチューニングの特性を完全に説明し、皮質のカノニカル回路のモデルとして利用しようと試みたものがある。
一次視覚野の損傷は暗点 (視野にできた『穴』) を生み出す。興味深いことに、暗点を持つ患者は意識的にそれを知覚出来ないにも関わらず、暗点における視覚情報を利用することが出来る。この現象は盲視と呼ばれ、意識に相関した脳活動 (neural correlate of consciousness) に興味を持つ研究者に広く研究されている。
一次視覚野 (V1)
一次視覚野脳の視覚野で最も良く調べられている領域である。研究されたすべての哺乳類において、一次視覚野は後頭葉 (後頭葉は視覚刺激の処理を担っている) の後頭極に位置している。 一次視覚野は、最も単純で最も初期に活動する視覚野で、静止、または運動する対象に関する情報の処理に特化し、また、パターン認識に力を発揮する。
機能的に定義された一次視覚野と呼ばれる領域は、解剖学的に定義される線条皮質とおよそ同等である。"線条皮質 (striate cortex)"という名前はジェンナリ線 (stria of Gennari) と呼ばれる、外側膝状体から灰白質のIV層へと伸びる髄鞘化された軸索の、肉眼でも識別可能な大きな縞模様に由来する。
一次視覚野はI層からVI層までラベルされた6層の機能的に異なる層に分けられる。その内、外側膝状体 (LGN) から殆どの視覚情報の入力を受けるIV層は4A、4B、4Cα、4Cβ のさらに4層に分けられる。 4Cα 亜層は外側膝状体からの殆どの巨細胞性入力を受け、4Cβ 層は小細胞性経路からの入力を受ける。
ヒト成人の一次視覚野の平均ニューロン数はそれぞれの大脳半球につき、約1億4000万個ほどであると見積もられる。(Leuba & Kraftsik, Anatomy and Embryology, 1994)
機能
眼優位性コラムの模式図。これらの皮質コラムは、それぞれ片方の眼の受容野の一部を表現している。
方位選択性コラムの模式図。受容野を通過するエッジの傾きによって、コラムの反応選択性がチューニングされている。方位選択性コラムは、ピンホイール (pinwheel) を中心に特定の受容野における全ての方位をカバーするように構成されている。
V1 は視覚における空間情報の明確なマップを持つ。例えば、ヒトの鳥距溝上壁は視野の下半分の視覚情報に強く応答し、下壁は視野の上半分に応答する。概念的には、このレチノトピーのマッピングは網膜から V1 へ視覚像の変換とみなせる。視野と V1 における位置の対応は非常に正確で、盲点でさえも V1 でマップされている。この対応関係は進化的に基本的で、V1 をもつ殆どの動物において見られる。中心窩を持つ動物やヒトでは、 V1 の大きな割合を占める領域が、視野の中心にある小さい領域をマップしている。この現象は皮質拡大(cortical magnification) として知られる。おそらく、正確な空間的コーディングのために、 V1 のニューロンの受容野の大きさは全ての視覚野の微小領域で最小であろう。
V1 ニューロンのチューニング特性 (ニューロンの応答選択性) は時間によって大きく異なる。短時間 (40ms前後) で、それぞれの V1 ニューロンは刺激の小さな組に対して強くチューニングされる。つまり、それぞれのニューロンの応答性は視覚刺激の方位、空間周波数や色の僅かな違いに分けることが出来る。さらに、ヒトと、両眼視をする動物の、それぞれの V1 ニューロンは眼優位性を持ち、文字通り両眼のうちの片方に対しチューニングしている。V1 と一般的な一次感覚野のニューロンは似たチューニング特性を持つもので集まり、皮質コラムと呼ばれる構造を作る。デイヴィッド・ヒューベルとトルステン・ウィーセルは眼優位性と方位の2つのチューニング特性の皮質コラムについて古典的なモデル (the classic ice-cube organization model) を提唱した。しかし、このモデルは色や空間周波数などの、ニューロンがチューニングされる他の多くの特徴については適合しなかった。これら全ての V1 の皮質コラムの正確な構成は、最近の研究において、いまだにホットなトピックである。
現在では、V1 ニューロンの初期の応答は選択的な時空間フィルター(spatiotemporal filters)で構成されていると考えられている。空間次元では、V1 の機能は多くの空間的に局所的で複合的なフーリエ変換に似たものであると考えらる。理論的には、このようなフィルターは、空間周波数や方位、運動、運動方向、速度 (したがって、時間周波数も) やほかの多くの時空間的特徴について神経的な処理を行うことができる。V1 ニューロンにおける実験は、この理論を実証するが、さらに新しい疑問も生む。
時間的に遅く (100 ms後) に、V1 のニューロンはシーン(scene)のより大局的な構造に応答する(Lamme & Roelfsema, 2000)。このような応答特性は回帰性の処理 (高次の領域から低次の領域への影響) と錐体細胞の水平な結合(Hupe et al 1998)により生じるものと考えられる。
V1 へと中継される視覚情報は空間的 (または光学的)な像としてというよりは、局所的なコントラストとしてコードされている。例えば、片側が黒、反対側が白から成る像は、局所的なコントラストが最大である黒と白を分ける線がコードされ、輝度の情報 (黒さや白さ自体) は僅かなニューロンしかコードしない。情報が高次の視覚領域へと中継されるにしたがって、非局所的な周波数/位相信号がより多くコードされていく。重要なことは、このような皮質での視覚処理の初期では、視覚情報の空間的な位置は局所的なコントラストのコーディングのなかで強く保存されている点である。
V2 [編集]
V2は前有線皮質(prestriate cortex) とも呼ばれ[4]、視覚野の2番目に広い領域で、視覚連合野の1番初めの領域である。この領域は V1 からの強いフィードフォワード接続を受け、V3、V4、V5へと接続を送っている。また、V1 への強いフィードバック接続を持つ。
解剖学的には V2 は左右半球の背側と腹側の4つの四分円に分けられる。この4領域が一緒になって視覚世界の完全なマップを形作っている。機能的には V2 は V1 と多くの共通な特性を持つ。細胞は方向や空間周波数、色などの単純な特性にチューニングされている。V2 ニューロンの多くの応答は主観的輪郭の向きやその視覚刺激が図の一部か地の一部かなどのより複雑な特性によって調節を受けている。(Qiu and von der Heydt, 2005).
最近の研究によって、V2 の細胞は注意による調節 (attentional modulation) が小さく(V1 より大きく、V4 より小さい)、また、単一の受容野における異なる下位領域の、複数の方向に反応することで、適度に複雑なパターンにチューニングされていることが判明している。
V3 を含む3次視覚皮質複合体
3次視覚皮質複合体という用語は V2 の前部に接する皮質領域を示し、V3領域を含んでいる。ヒトにおいて、"複合体"という名前は V3 と呼ばれる領域の正確な範囲について、V2 の前にある領域は2、3の機能的な下位領域を含んでいるとする研究者によって論争が起きているという事実による。例えばデイヴィット・ヴァン・エッセン (David Van Essen) ら (1986) は大脳半球の上部に "背側 V3"(dorsal V3)という領域が存在し、脳の下部に位置する"腹側 V3" (ventral V3, 腹側後部領域, ventral posterior area, VP)とは異なると提唱している。背側 V3 と腹側 V3 は脳の異なる領域から異なる接続を受け、多くの染色法によってことなる染まり方をし、視覚刺激の異なる組み合わせ (例えば色選択的ニューロンは腹側 V3 に多い) に応答する。他の下位領域として、V3A と V3B がヒトにおいて報告されている。これらの下位領域は、背側 V3 の付近に存在するが V2 とは区別される。
背側 V3 は通常、背側皮質視覚路の一部と考えられ、V2 と一次視覚野から入力を受け、後頭頂葉に投射している。解剖学的にはブロードマンの脳地図における19野に位置する。fMRI による最近の研究によって V3/V3A 領域は広域的な動きの処理に関わるとされている[5]。背側 V3 を全視野を表現する背内側野 (DM) と呼ばれる大きな領域の一部と考える他の研究も存在する。背内側野のニューロンは視野の大部分を占める大きなパターンの同期した動きに応答する。(Lui and collaborators, 2006)
腹側 V3 (VP)は一次視覚野からの非常に弱い結合と、下側頭回との強い結合を持つ。初期の研究では、腹側 V3 は視野の上半分 (固視点の上側) を表現している領域のみを指していた。しかし、より最近の研究では、腹側 V3 は以前考えられていたよりもより広く、他の視覚野と同様に視野全体を表現する領域を考えられている。この改訂されたより広い腹側 V3 はローサ (Rosa) とツィーデル (Tweedale) によって腹外側後部領域 (VLP) と呼ばれた[6]。
V4
V4はマカクザルでは、有線外視覚皮質に存在する視覚野の一部である。V4 は V2 の前部に位置し、後下側頭野 (PIT) の後部に位置する。V4 は左右のV4d、V4vの4領域から成るとされ、さらに尾側と吻側の下位領域を加える者もいる。ヒトにおける V4 ホモログはまだ知られておらず、精査されている事柄である。
V4 は腹側皮質視覚路の3番目の領域で、V2 からの強いフィードフォワードな入力を受け, 後下側頭野 (PIT) へと強い結合を持つ。また V1 からの直接の入力をその中心部へ受けている。加えて、 V5 と背側前月状回 (DP) へと弱い結合が存在する。
V4 は腹側皮質視覚路において強い注意による調節 (attentional modulation) を受ける最初の領域である。多くの研究では、選択的注意が V4 の発火頻度を20%変化させるとしている。モラン (Moran) とデシモーネ (Desimone) による、影響力の大きい論文は、このような効果を特徴付け、注意による効果は視覚野のどこにおいても見られることを明らかにした最初の論文である[1][7]。
V1 のように V4 は方向、空間周波数、色にチューンしているが、V1 とは異なり、V4 は対象の特徴の中間的な複合性、例えば、単純な幾何学的形状などに、チューンしている。しかし、V4 のチューニング空間の完全なパラメーターの記述を行った者はいない。また、V4 は下側頭回のように顔などの複雑な対象にはチューニングされていない。
V4 の発火特性は1970年代後半にこの領域の名付け親でもあるセミール・ゼキ (Semir Zeki) によって初めて描写された。それまでは、 V4 はその解剖学的な名である前月状回として知られていた。元々、ゼキは V4 の目的は色情報を処理するためであると考えていたが、1980年代前半に V4 は他のより初期の視覚野と同様に形の認知に直接関わっていると示された。この研究はアンガーライダー (Ungerleider) とミシュキン (Mishkin) により1982年に初めて提唱された2経路仮説 (上述) によっても支持されている。
最近の研究によって、V4 は刺激の顕著性(salience)をコードする長期可塑性を示し、その可塑性は前頭眼野からの信号によってコントロールされることが分かった。これにより、注意によって受容野の空間的な特性が変化する。
V5/MT野
V5はMT野 (middle temporal) としても知られ、外線条野の一部であり、運動の知覚、局所運動信号のグローバルな知覚への統合、及びある種の眼球運動における主要な役割を担うと考えられている[8]。
神経結合
MT 野は様々な皮質及び皮質下の脳領域に結合している。その入力は V1、V2、背側 V3、背内側野[9] [10]、 外側膝状体の顆粒細胞(koniocellular)領域[11]、及び、下視床枕から受けている。MT 野への投射のパターンは視野の中心と周辺で幾分異なっている。後者では、皮質正中部と脳梁膨大後部からの入力を受ける[12]。
一般的には、MT 野への"最も重要な"入力はV1に由来すると考えられている[8]。しかし、いくつかの研究は MT 野のニューロンは V1 ニューロンが破壊または不活性化された後でも、視覚情報に対して、多くの場合は方向選択的に応答できることを示した[13]。加えて、セキール・ゼキ (Semir Zeki) らによる研究ではある種の視覚情報は V1 に到着する前に MT 野に到着することが示唆されている。
MT 野はその主な出力を、 FST や MST、V4t (中側頭半月部) を含むその領域を直接取り囲む領域へと送っている。他の MT 野の出力先は眼球運動に関係する前頭葉と頭頂葉の領域 (前頭眼野と外側頭頂間野(LIP))である。
機能
MT 野のニューロンの電気生理学的な特性を調べた最初の研究により、大部分の細胞が運動する視覚刺激の速度と方向にチューニングされていることが分かった[14] [15]。このような結果は MT 野が視覚運動の処理に重要な役割を担っていることを示唆している。
MT 野の損傷による研究によっても、その運動知覚と眼球運動における役割は示されている。また、運動を知覚することが出来ず、世界が静的な"フレーム"の連続に感じられる患者の神経心理学的研究により、霊長類における MT 野のヒトにおけるホモログは V5 であると分かった[16][17]。
しかし、V1 のニューロンも運動の方向や速度にチューニングされていることから、これらの初期の結果は、V1 では処理不可能な何を MT 野では処理可能なのかという問題をまだ解けてはいない。多くの研究によって、この領域が局所的な視覚運動信号を複雑な対象の大局的運動(global motion)へと統合していることが分かった[18]。 例えば V5 の損傷により、運動の知覚と複雑な刺激の処理に障害が起きる。V5 には複雑な視覚的特徴 (線の端やコーナーなど) の運動に選択的に応答する多くのニューロンがある。 V5 にあるニューロンの微小刺激は動きの知覚に影響を及ぼす。例えば、上向きの運動に選択的に応答するニューロンを見つけて、電極により刺激したとき、ニューロンを刺激されたサルは上向きの運動をより多く報告しやすくなる[19]。
MT 野で行われている計算の正確な形に関してはいまだに論争が存在する[20]。そして、ある研究では、特徴の運動は V1 のような視覚野における低次の領域でも、実はすでに利用可能であるとしている[21] [22]。
機能的な構成
MT 野は方向コラムにより構成されていることが示されている[23]。デアンジェリス (DeAngelis) は MT 野のニューロンは両眼視差へのチューニングに基づいて構成されていると主張している[24]。
参考文献
^ a b Goodale & Milner (1992). “Separate pathways for perception and action.”. Trends in Neuroscience 15: 20-25. DOI: 10.1016/0166-2236(92)90344-8.
^ Ungerleider and Mishkin (1982). in Ingle DJ, Goodale MA and Mansfield RJW: Analysis of Visual Behavior. MIT Press.
^ Franz VH, Scharnowski F, Gegenfurtner (2005). “Illusion effects on grasping are temporally constant not dynamic.”. J Exp Psychol Hum Percept Perform. 31(6): 1359-78.
^ Gazzaniga, Ivry & Mangun: Cognitive neuroscience, 2002
^ Braddick, OJ, O'Brian, JMD, et al (2001). “Brain areas sensitive to visual motion.”. Perception 30: 61-72. DOI: 10.1068/p3048.
^ Rosa MG, Tweedale R (2000) Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey. J Comp Neurol 422:621-51.
^ Moran & Desimone. Selective Attention Gates Visual Processing in the Extrastriate Cortex. Science 229(4715), 1985.
^ a b Born R, Bradley D. “Structure and function of visual area MT.”. Annu Rev Neurosci 28: 157-89. PMID 16022593.
^ Felleman D, Van Essen D. “Distributed hierarchical processing in the primate cerebral cortex.”. Cereb Cortex 1 (1): 1-47. PMID 1822724.
^ Ungerleider L, Desimone R (1986). “Cortical connections of visual area MT in the macaque.”. J Comp Neurol 248 (2): 190-222. DOI: 10.1002/cne.902480204. PMID 3722458.
^ Sincich L, Park K, Wohlgemuth M, Horton J (2004). “Bypassing V1: a direct geniculate input to area MT.”. Nat Neurosci 7 (10): 1123-8. DOI: 10.1038/nn1318. PMID 15378066.
^ Palmer SM, Rosa MG (2006). “A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision.”. Eur J Neurosci 24(8): 2389-405.
^ Rodman HR, Gross CG, Albright TD (1989) Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J Neurosci 9(6):2033-50.
^ Dubner R, Zeki S (1971). “Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey.”. Brain Res 35 (2): 528-32. DOI: 10.1016/0006-8993(71)90494-X. PMID 5002708..
^ Maunsell J, Van Essen D (1983). “Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation.”. J Neurophysiol 49 (5): 1127-47. PMID 6864242.
^ Hess, Baker, Zihl (1989). “The" motion-blind" patient: low-level spatial and temporal filters”. Journal of Neuroscience 9 (5): 1628-1640.
^ Baker, Hess, Zihl (1991). “Residual motion perception in a" motion-blind" patient, assessed with limited-lifetime random dot stimuli”. Journal of Neuroscience 11 (2): 454-461.
^ Movshon, J.A., Adelson, E.H., Gizzi, M.S., & Newsome, W.T. (1985). The analysis of moving visual patterns. In: C. Chagas, R. Gattass, & C. Gross (Eds.), Pattern recognition mechanisms (pp. 117-151), Rome: Vatican Press.
^ Britten & Van Wezel 1998
^ Wilson, H.R., Ferrera, V.P., & Yo, C. (1992). A psychophysically motivated model for two-dimensional motion perception. Vis Neurosci, 9 (1), 79-97.
^ Tinsley, C.J., Webb, B.S., Barraclough, N.E., Vincent, C.J., Parker, A., & Derrington, A.M. (2003). The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey. J Neurophysiol, 90 (2), 930-937.
^ Pack & Born, 2003
^ Albright T (1984). “Direction and orientation selectivity of neurons in visual area MT of the macaque.”. J Neurophysiol 52 (6): 1106-30. PMID 6520628.
^ DeAngelis G, Newsome W (1999). “Organization of disparity-selective neurons in macaque area MT.”. J Neurosci 19 (4): 1398-415. PMID 9952417.
外部リンク
ユタ大学の(Matthew Schmolesky) による一次視覚野の解説
ハーバード大学のデービット・ヒューベルによる視覚野の構造の解説
視覚の計算モデリングのシミュレーター
関連項目
ブロードマンの脳地図
後頭葉
背側皮質視覚路
腹側皮質視覚路
0 件のコメント:
コメントを投稿